A taxonomy of algebraic structures
digraph {
splines=ortho
subgraph cluster_plus {
label="properties for `+` operation"
style=dashed
assot1 [shape=box, color=red, label="assotiative\na+(b+c) = (a+b)+c"]
commu1 [shape=box, color=blue, label="commutative\na+b=b+a"]
unitt1 [shape=box, color=magenta, label="identity\nx + 0 = x"]
inver1 [shape=box, color=green, label="all elements\nhave an inverse"]
assot1 -> inver1 -> unitt1 -> commu1 [style=invis]
{rank=same assot1 inver1 unitt1 commu1}
}
subgraph cluster_time {
label="properties for `*` operation"
style=dashed
zerodv [shape=box, color=darkgreen, label="No zero divisor\na*b=0 => a=0||b=0"]
assot2 [shape=box, color=red, label="assotiative\na*(b*c) = (a*b)*c"]
commu2 [shape=box, color=blue, label="commutative\na+b=b+a"]
distri [shape=box, color=orange, label="distributive\na*(b+c) = a*b+a*c"]
unitt2 [shape=box, color=magenta, label="identity\nx + I = x"]
inver2 [shape=box, color=green, label="all elements but 0\nhave an inverse"]
zerodv -> assot2 -> inver2 -> unitt2 -> commu2 -> distri [style=invis]
{rank=same zerodv assot2 distri unitt2 inver2 commu2}
}
monoid [shape=record, label="{Monoid|Semi group if no identity}"]
groupp [shape=box, label="Group"]
abelgr [shape=box, label="Abelian group"]
ringgg [shape=record, label="{Ring|Rng if no identity}"]
domain [shape=record, label="{Integral Domain|Domain if not commutative}"]
fieldd [shape=box, label="Field"]
module [shape=record, label="{Module|scalar is a ring}"]
vector [shape=record, label="{Vector space|scalar is a field}"]
assot1 -> monoid [color=red]
unitt1 -> monoid [color=magenta]
monoid -> groupp [weight=100]
inver1 -> groupp [color=green]
groupp -> abelgr [weight=100]
commu1 -> abelgr [color=blue]
abelgr -> module
abelgr -> vector
abelgr -> ringgg [weight=100]
assot2 -> ringgg [color=red, constraint=false]
unitt2 -> ringgg [color=magenta, constraint=false]
distri -> ringgg [color=orange, constraint=false]
ringgg -> domain [weight=100]
commu2 -> domain [color=blue, constraint=false]
zerodv -> domain [color=darkgreen, constraint=false]
domain -> fieldd [weight=100]
inver2 -> fieldd [color=green, constraint=false]
iduniq [shape=none, margin="0,0", label="identity is unique\nand commutes"]
ivuniq [shape=none, margin="0,0", label="inverse is unique\nand commutes\n a+(-a) = (-a)+a = I"]
zeroml [shape=none, margin="0,0", label="Zero multiplication\na*0 = 0"]
inver1 -> ivuniq [dir=none, weight=0]
unitt1 -> iduniq [dir=none, weight=0]
zeroml -> distri [dir=none]
fieldd -> inver2 [minlen=2, style=invis]
{rank=same fieldd zeroml}
}
Constructed structures
digraph {
groupp [shape=box, label="Group"]
cosett [shape=parallelogram, label="Coset"]
subgrp [shape=box, label="Subgroup"]
kernel [shape=box, label="Kernel"]
simple [shape=box, label="Simple group"]
normal [shape=box, label="Normal group"]
quogrp [shape=record, label="{Quotient|group or ring}"]
ringgg [shape=box, label="Ring"]
ideall [shape=box, label="Ideal"]
untgrp [shape=box, label="Group of Units"]
fieldd [shape=box, label="Field"]
extent [shape=record, label="{Extension|ring or field}"]
polyno [shape=box, label="Polynomial ring"]
ratiof [shape=box, label="Rational function field"]
groupp -> subgrp [weight=3]
groupp -> quogrp
groupp -> untgrp
subgrp -> cosett [style=dashed]
subgrp -> kernel
subgrp -> simple
subgrp -> normal
normal -> quogrp [style=dashed]
ringgg -> ideall [weight=3]
ringgg -> quogrp
ringgg -> untgrp [style=dashed]
ringgg -> extent
ideall -> quogrp [style=dashed]
fieldd -> extent
extent -> polyno
extent -> ratiof
{rank=same groupp ringgg fieldd}
}
Structure examples
Cyclic groups
Let\ x \in G\ and\ x \neq 0
\langle x \rangle = \{ ... x^{-2}, x^{-1}, 0, x, x^2 ... \}\quad is\ a\ cyclic\ subgroup\ of\ G
For\ example\ :
\langle 1 \rangle = \mathbb{Z}\ with\ addition
Symmetric groups
- \(S_n\) is the group of all permutations of n elements.
- Cardinality \(\|S_n\| = n!\)
- Every element in \(S_n\) can be written as composition of disjoint cycles
- Every element in \(S_n\) can be written as composition of transpositions
a \to c
b \to e \quad can\ be\ written\ as\ cycles \quad (a\ c\ d)(b\ e)
c \to d \quad or\ as\ transpositions \quad (c\ a)(c\ d)(b\ e)
d \to a
e \to b
- \(P \in S_n\) is an even permutation iff it can only be decomposed as a even number of transpositions.
- Equivalent defintion : \(\{(x,y) \mid x < y\ and\ P(y) > P(x)\}\) has an even cardinality
- The alternating group \(A_n\) is the subgroup of even permutations in \(S_n\)
Matric groups: general and linear
- \(GL_n(\mathbb{R})\) is the general linear group of \(n \times n\) matrices with real coefficients.
- Definition : \(\{A \in M_n \mid det(A) \neq 0\}\)
- \(SL_n(\mathbb{R})\) is the special linear group of \(n \times n\) matrices with real coefficients.
- Definition : \(\{A \in M_n \mid det(A) = 1\}\)
- \(SL_n(\mathbb{R})\) is a subgroup of \(GL_n(\mathbb{R})\)
- Reminder : \(\forall A,B \in M_n \quad det(AB) = det(A)det(B)\)
Theorems
Subgroup cardinality (Lagrange theorem)
For all finite groups, the cardinality of any subgroup divides the cardinality of the group.
\mbox{Let H be a proper subgroup of G : } H=\{1 ... h_n\} \subset G \mbox{ and G finite}
\forall x_1 \in G \setminus H \implies x_1H=\{x_1 ... x_1h_n\} \cap H = \emptyset
\forall x_2 \in G \setminus H \setminus x_1H \implies x_2H \cap x_1H = \emptyset
\implies \exists \{x_1...x_k\} \in G \mbox{ so that } \bigcup x_iH = G \mbox{ and } |G| = k \times |H|
\(x_1H...x_kH\) is called a coset decomposition of G.
Normal subgroups and quotient groups
Let\ H \subset G\ and\ \{H, x_2H ... x_kH\}\ a\ coset\ decomposition\ of\ G
Define\ the\ operation\ +_q\ on\ \{0, x_2 ... x_k\}\ as\quad (x_i +_q x_j) \to x_l\quad tq\ x_i+x_j \in x_lH
Then\ +_q|\{0, x_2 ... x_k\}\ is\ a\ group
\iff H\ is\ a\ normal\ subgroup
\iff \forall y \in G \quad yHy^{-1} = H
G
is a simple group if its only normal groups are {0}
and G
.
Kernel of a homomorphism
An homomorphism is a function \(f:G_1 \to G_2\) so that \(\forall x,y \in G_1\quad f(x + y) = f(x) + f(y)\).
An isomorphism is a bijective homomorphism.
- Corollary : homomorphism respects identities \(f(0_1) = 0_2\)
- Corollary : homomorphism respects inverses \(f(a^{-1}) = f(a)^{-1}\)
Kernel is the subgroup of elements in \(G_1\) that map to the identity in \(G_2\).
ker(f) = \{x \in G_1 \mid f(x) = 0_2\}
Cayley theorem : every group is isomorphic to a permutation group
For finite groups this means that every group is isomorphic to a subgroup of \(S_n\).
Here is how you can construct an isomorphic group :
Let\ G = \{0, x_1 ... x_n\}
\forall x \in G \quad x+G = \{x, x+x_1 ... x+x_n\} = G
Let\ P_x\ the\ permutation \quad \{0, x_1 ... x_n\} \to \{x, x+x_1 ... x+x_n\}
\forall x,y \in G \quad P_x \circ P_y = P_{x+y}